
Demo: Functors and Music
Heinrich Apfelmus

Germany
apfelmus@quantentunnel.de

Abstract
We present work-in-progress on two projects whose com-
bination enables live coding music in Haskell: cnoidal, a li-
brary for representing and transforming music, and Hyper-
Haskell, a Haskell interpreter with a worksheet interface
and graphical output. The library represents music as a col-
lection of time intervals tagged with values, a data struc-
ture known as temporal media. Parametric polymorphism
suggests various functor instances, like Applicative Functor,
which we find to be highly useful for live coding. However,
a lawful Monad instance can only be defined for some vari-
ants of the data type. We stress that these projects are not
a specialized music environment, instead we compose a li-
brary with a general purpose interpreter.

CCSConcepts •Applied computing→ Sound andmu-
sic computing; • Software and its engineering→ Func-
tional languages.

Keywords music, live coding, algorave,monad, applicative
functor, interpreter, Haskell, functional programming
ACM Reference Format:
Heinrich Apfelmus. 2019. Demo: Functors and Music. In Proceed-
ings of the 7th ACM SIGPLAN International Workshop on Functional
Art, Music, Modeling, and Design (FARM ’19), August 23, 2019, Berlin,
Germany. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3331543.3342582

1 Temporal Media with cnoidal
The cnoidal music library is based on the notion of temporal
media [Hudak 2004, Hudak 2008, Hudak 2015, Archipoff 2015],
a data type that essentially represents a collection of time in-
tervals tagged with values. If the values are musical pitches,
this type represents a musical score: each time interval in-
dicates when and for how long a musical note with a given
pitch is played. We generalize and allow the value type to
be variable, and thus obtain a polymorphic data type
data Media a
toIntervals :: Media a → Set (Interval, a)

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
FARM ’19, August 23, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6811-7/19/08.
https://doi.org/10.1145/3331543.3342582

This is an abstract data type whose main operation, denoted
toIntervals, returns the concrete collection of time inter-
vals (of type Interval) paired with values. We assume that
the type Set represents an unordered collection. (Practical
implementations often require that the values type is amem-
ber of the type class Ord, but for the sake of simplicity, we
ignore this here.) We require that the intervals be nonempty,
but not that they are disjoint: the intervals are allowed to
overlap, so that multiple notes sound at the same time and
the represented snippet of music is polyphonic. These invari-
ants are the main reason why we chose to discuss Media as
an abstract data type; any concrete implementation, say, as
a list of pairs, has to be careful about maintaining them. But
the abstract specification also allows us to discuss variants
of the type: A concrete definition would imply that two me-
dia are equal if their intervals are equal, but if we do not
impose this condition, so that m = n does not follow from
toIntervals m = toIntervals n, then the type may con-
tain additional data. For instance, adding a total duration
duration :: Media a -> Time

would allow us to compose musical pieces in sequence, by
playing the next piece after the previous one has ended.This
will include a pause if the duration of the first one is different
from the ending time of its last interval.

One of the key insights of typed functional programming
is that higher-kinded types like Media are often functors
obeying various laws, and that this provides very general
and useful transformations on the data. Then, libraries like
Control.Monad allow us to combine such transformations
in interesting ways. We posit that this is so useful that we
should not only ask whether the laws of Functor, Applica-
tive Functor, and Monad can be satisfied for an existing data
type, but to let these laws guide the design of new data types.
We will indeed find that functors are helpful for live cod-
ing music. For example, the Applicative Functor instance is
similar to zipping lists and allows us to apply a rhythm to
a note or harmony, similar to how a rhythm guitar player
applies a strum pattern to a chord. For some variants of the
data type, there is even a Monad instance, probably novel,
which allows us to embellish each note with new notes, e.g.
a mordent or an arpeggio. We now discuss these instances
in more detail.

1.1 Applicative Functor
Temporal media are a Functor, where a combinator fmap al-
lows us to apply a function to each value. Its semantics are
straightforward to express via toIntervals:

52

https://doi.org/10.1145/3331543.3342582
https://doi.org/10.1145/3331543.3342582
https://doi.org/10.1145/3331543.3342582

FARM ’19, August 23, 2019, Berlin, Germany Heinrich Apfelmus

e4harmony =

rhythm =

const
<$> harmony
<*> rhythm
 =

c4

()

fig-apply

mymusic =

mordent p =

mymusic
>>=
mordent =

0

fig-join

p p+1

a3

()()

e4 e4 e4

c4 c4 c4

a3 a3 a3

4

p

0 1 0 4 5 4

Figure 1. Illustration of the apply operation on temporal
media. The horizontal direction corresponds to the passage
of time, and the boxes represent time intervals with val-
ues. All intervals from the first medium are intersected
with those from the second medium, while functions are ap-
plied to values. This operation is very useful for imposing a
rhythm upon a chord.

fmap :: (a → b) → Media a → Media b
toIntervals (fmap f m) =

fmap (\(i,a) → (i,f a)) (toIntervals m)

But temporal media are also an Applicative Functor. For
this, several laws need to be satisfied, and we have to chose
the Interval type wisely:
type Interval = (Time, Maybe Time)

The first and second component of the pair are the start-
ing and ending time of the interval. We impose that starting
times are always >= 0, and that an ending time of Nothing
means that the interval is infinitely long; i.e. it never ends.
This allows us to embed pure values into media:
pure :: a → Media a
toIntervals (pure a) = fromList [((0,Nothing), a)]

where we assume that fromList converts a list of time in-
tervals and values to the Media a type. Applying media to
each other is very similar to zipping lists: We arrange the in-
tervals in two parallel tracks, and apply the functions from
one track to the values in the other track. However, since
intervals can overlap and do not necessarily align, we have
to combine them, here by intersecting them. An example is
shown in Fig. 1. Assuming combinators
cartesian :: Set a → Set b → Set (a,b)
filterJust :: Set (Maybe a) → Set a
intersect :: Interval → Interval → Maybe Interval

we can define the semantics of apply (<*>) as
(<*>) :: Media (a → b) → Media a → Media b

toIntervals (mf <*> ma) = filterJust $ fmap apply1 $
cartesian (toIntervals mf) (toIntervals ma)

apply1 :: ((Interval, a → b), (Interval, a))
→ Maybe (Interval, b)

apply1 ((if,f), (ia,a)) =
fmap (\i → (i,f a)) $ intersect if ia

Essentially, we define how to apply a pair of single intervals,
and then lift this to sets of intervals by demanding that appli-
cation distributes over unions. Put differently, if we denote
the union, or parallel composition, of media by
(<|>) :: Media a → Media a → Media a

then we have the distributive laws
(mf <|> mg) <*> ma = (mf <*> ma) <|> (mg <*> ma)
mf <*> (ma <|> mb) = (mf <*> ma) <|> (mf <*> mb)

Incidentally, this gives an instance of the Alternative class.
We skip a formal proof of the Applicative laws here, but note
that they can only be established if we can reason about
equality of values by using the operations of the abstract
data type. For instance, this is the case if we impose that
two values of type Media a are equal whenever applying
toIntervals gives equal results. Then, the main idea of the
proof is to observe that the type Set (Interval, a) is es-
sentially the composition of two Applicative Functors: The
Set monad, and the Writer monad [Jones 1995] where the
output type is Interval, which forms a monoid under inter-
section. Then, we use that the composition of Applicative
Functors is again an Applicative Functor [McBride 2007].
This argument can be extended to temporal media with an
additional duration operation by composing with another
Writer.

The apply operation is useful for imposing a rhythm upon
a chord. A rhythm is about the timing of notes, the values
are unimportant:
type Rhythm = Media ()

A popular rhythm for beginning guitarists is the “campfire
strumming pattern”, which we take for granted
campfire :: Media ()

To play a chord, say A minor, in this rhythm, we can inter-
sect infinitely long intervals with this rhythm [see Fig. 1]:
harmony, guitar :: Media Pitch
harmony = pure a3 <|> pure c4 <|> pure e4
guitar = const <$> harmony <*> campfire

Here, a3, c4, e4 are pitches of A minor, and <$> is the infix
synonym for fmap. This also works if the harmony changes
over time.

1.2 Monad
The variant of temporal media where equality is determined
solely by the collection of intervals also supports a Monad
structure, which seems to be novel. Its key advantage is that
it allows the addition of new intervals, while the Applicative
operation only combines existing intervals.

53

Demo: Functors and Music FARM ’19, August 23, 2019, Berlin, Germany

Before discussing this Monad structure in detail, we point
out that it will not be compatible with the Applicative struc-
ture just discussed. The situation is similar to that for the
list data type: The standard Monad structure for lists gives
rise to an apply operation that corresponds to a cartesian
product, but the zipWith function also represents an apply
operation, which is different and corresponds to the inter-
section of lists. The Applicative structure for temporal me-
dia is analogous to the latter operation, as it corresponds to
interval intersection. In other words, temporal media are a
data type that supports multiple, incompatible Applicative
structures, where one of them arises from a Monad struc-
ture. For lists, a newtype ZipList has been introduced to
provide access to both instances, but the author feels that
this may be premature for the Media type.
Unfortunately, this Monad structure seems to be at odds

with the additional duration operation, i.e. with the desider-
atum that temporal media can be easily composed in se-
quence. As far as the toIntervals operation is concerned,
the monad laws can be satisfied, but it is not clear to the
author how the monadic bind operation can combine dura-
tions in a useful way. Thus, it seems that we have a choice:
Either easy sequential composition, or a Monad instance. In
practice, it appears that sequential composition is more de-
sirable. Providing an instance of the Monad class that does
not satisfies the laws is not an option, because that would
break most library functions built on them, but we can still
offer the join function described below as part of the regu-
lar API.

We now specify the Monad structure. Assuming combi-
nators

filterJust :: Set (Maybe a) → Set a
intersect :: Interval → Interval → Maybe Interval
start :: Interval → Time
shift :: Time → Interval → Interval

start (s,e) = s
shift dt (s,e) = (dt+s, fmap (dt+) e)

the monadic join is specified by

join :: Media (Media a) → Media a
toIntervals (join mma) = filterJust $
[fmap (\k → (k,a))

$ intersect i (shift (start i) j)
| (i,ma) <- toIntervals mma
, (j,a) <- toIntervals ma]

where we have taken the liberty to use list comprehension
notation for Set. In other words, eachmedium that is associ-
ated to an interval will be shifted so that it starts at the same
time as this interval, and will also be cut to fit within this
interval [see Fig. 2]. Now, for the variant where two values
of type Media a are equal if applying toIntervals gives
equal results, this implies the three monad laws

e4harmony =

rhythm =

const
<$> harmony
<*> rhythm
 =

c4

()

fig-apply

mymusic =

mordent p =

mymusic
>>=
mordent =

0

fig-join

p p+1

a3

()()

e4 e4 e4

c4 c4 c4

a3 a3 a3

4

p

0 1 0 4 5 4

Figure 2. Illustration of the monadic bind operation on tem-
poral media. The time intervals generated by the second ar-
gument are cut and shifted to fit into the time intervals of the
first argument. This operation is useful for embellishments,
e.g. a mordent.

m >>= pure = m
pure a >>= f = f a

(m >>= f) >>= g = m >>= (\a → f a >>= g)

Again, we skip the formal proof, but we note that the main
insight is that the type Set (Interval, a) is essentially an
application of the WriterTmonad transformer [Jones 1995]
to the Set monad. However, in this case, the binary opera-
tions that turns Interval into a monoid is a combination
of both a shift in time and an intersection of intervals. It is
remarkable that the half-infinite interval beginning at zero,
(0,Nothing), is both a left- and a right-identity element for
this operation.Thus, this particular interval is key to design-
ing a data type that can accommodate the Applicative Func-
tor andMonad laws.We also see that the difficulty of adding
the duration datum can be interpreted as a difficulty of the
Writer type constructor not being a monad transformer.

The Monad structure is useful for embellishing musical
notes with more notes. For instance, a mordent is an embel-
lishment where the pitch is briefly interjected with the pitch
one half-tone above. We could specify it as
mordent :: Pitch → Media Pitch
mordent pitch = fromIntervals $

[((0, Just dt) , pitch)
, ((dt, Just (2*dt)) , pitch+1)
, ((2*dt, Nothing) , pitch)]
where dt = 1/32

In other words, a pitch is extended into a sequence of notes.
A more extreme example would be an arpeggiator, where
the notes of a given chord a played in sequence.Themonadic
bind operation (>>=) allows us to apply these embellishments
to a piece of music [see Fig. 2]:
mymusic >>= mordent

This example shows that even if the monad laws are not
fulfilled, the join combinator is still useful for transforming
music.

54

FARM ’19, August 23, 2019, Berlin, Germany Heinrich Apfelmus

2 Live Coding with HyperHaskell
HyperHaskell, “the strongly hyped Haskell interpreter”, is
a graphical interpreter environment with a notebook inter-
face similar to Mathematica1 or Jupyter2. It is a new, if con-
ceptually standard, addition to the Haskell ecosystem. It is
built using the Electron framework3 and is intended to be
easy to install.

Values are displayed graphically using a new Display
class, the old Show class is only used when no graphical dis-
play is available yet. (Currently, graphics are specified via
HTML and SVG.) For instance, we can display the intervals
in temporal media as rectangles of different lengths; the au-
thor already found this useful for debugging an efficient im-
plementation of the Applicative Functor instance.

The notebook interface facilitates live coding since ex-
pressions can be revisited and modified once entered. We
also found it useful to add a function addFinalizerSession,
which allows us to run a finalizer action whenever source
code files are reloaded, like resetting the connection to a soft-
ware synthesizer.This makes it easier to develop the cnoidal
library with the interpreter.

3 Conclusion and Outlook
The author invites everyone to try out and useHyperHaskell.
If it can be used for live coding music, then it can be used
for live coding anything — data science, graphics, system
administration…

The cnoidal library is still in its early iterations. To cre-
ate interesting musical performances, it is desirable to not
just specify musical data directly, but also to specify patterns
that generate musical data. For instance, a pattern could
specify that every other measure, a different musical notes
are chosen randomly from a selected chord. This is left for
the future.

A Code Example
Here is a small notebook example that produces a nice back-
beatwith chipper piano chords. It assumes thatwe are hooked
up to a software synthesizer that understands standardMIDI.
Each Player object plays a given piece of music on repeat
until it is given a different one; then it will change at the
next full measure.

The example requires the imports
import Cnoidal
import Control.Applicative

The code is
-- Initialze MIDI connection to synthesizer
s <- openMidi
addFinalizerSession $ closeMidi >>= print
show s

1www.wolfram.com/mathematica/
2jupyter.org
3electronjs.org

-- Initialize ensemble
ensemble <- newEnsemble s
drums <- newPlayer 0
piano <- newPlayer 1
setTempoBpm ensemble 110
together ensemble [drums, piano]
addFinalizerSession $ dissolve ensemble

-- Drums
let [kick,snare,hihat,hihat2] = [36,38,44,42]

:: [Pitch]
let pat2 = hasten 16 $ beat "x,,, ,,x, x,,, ,,,x"
let pat3 = hasten 8 $ beat ",,x, ,,x,"
let pat4 = hasten 8 $ beat "xx,x ,x,x"
play drums $

(kick <$ pat2)
<|> (snare <$ pat3)
<|> (hihat <$ pat4)

-- Piano
let mychords = polyphony $ fromList

$ chords "am F C G"
let rhythm = staircase 1 $ replicate 4 $ campfire
let pattern1 = mychords <* rhythm
play piano $ pattern1

Acknowledgments
We thank the anonymous reviewers for helpful comments
and suggestions. This work was self-funded and performed
during the author’s free time.

References
[Archipoff 2015] Simon Archipoff, An Efficient Implementation of Tiled

Polymorphic TemporalMedia. In Proceedings of the 3rd ACMSIGPLAN
InternationalWorkshop on Functional Art, Music, Modelling and Design,
2015.

[Hudak 2004] Paul Hudak. An algebraic theory of polymorphic temporal
media. In Proceedings of PADL’04: 6th International Workshop on Prac-
tical Aspects of Declarative Languages, pages 1–15, 2004.

[Hudak 2008] Paul Hudak. A sound and complete axiomatization of poly-
morphic temporal media, Report, 2008.

[Hudak 2015] Paul Hudak and David Janin. From out-of-time design to in-
time production of temporal media, Research Report LaBRI, 2015.

[Jones 1995] Mark P. Jones. Functional programming with overloading
and higher-order polymorphism. In First International Spring School
on Advanced Functional Programming Techniques, Båstad, Sweden,
1995.

[McBride 2007] Conor McBride and Ross Paterson. Applicative program-
ming with effects, J. Funct. Prog. 18, pages 1–13, 2007.

55

https://www.wolfram.com/mathematica/
https://jupyter.org
https://electronjs.org

	Abstract
	1 Temporal Media with cnoidal
	1.1 Applicative Functor
	1.2 Monad

	2 Live Coding with HyperHaskell
	3 Conclusion and Outlook
	A Code Example
	Acknowledgments
	References

